Version: 3.x 
rasa.core.policies.ted_policy  TEDPolicy Objects# Copy @DefaultV1Recipe . register ( 
    DefaultV1Recipe . ComponentType . POLICY_WITH_END_TO_END_SUPPORT ,  is_trainable = True 
) 
class   TEDPolicy ( Policy ) 
Transformer Embedding Dialogue (TED) Policy.
The model architecture is described in
detail in https://arxiv.org/abs/1910.00486 .
In summary, the architecture comprises of the
following steps:
Copy - concatenate user input (user intent and entities), previous system actions, 
  slots and active forms for each time step into an input vector to 
  pre-transformer embedding layer; 
- feed it to transformer; 
- apply a dense layer to the output of the transformer to get embeddings of a 
  dialogue for each time step; 
- apply a dense layer to create embeddings for system actions for each time 
  step; 
- calculate the similarity between the dialogue embedding and embedded system 
  actions. This step is based on the StarSpace 
  (https://arxiv.org/abs/1709.03856) idea. 
 get_default_config# Copy @staticmethod 
def   get_default_config ( )   - >  Dict [ Text ,  Any ] 
Returns the default config (see parent class for full docstring).
 __init__# Copy def   __init__ ( config :  Dict [ Text ,  Any ] , 
             model_storage :  ModelStorage , 
             resource :  Resource , 
             execution_context :  ExecutionContext , 
             model :  Optional [ RasaModel ]   =   None , 
             featurizer :  Optional [ TrackerFeaturizer ]   =   None , 
             fake_features :  Optional [ Dict [ Text ,  List [ Features ] ] ]   =   None , 
             entity_tag_specs :  Optional [ List [ EntityTagSpec ] ]   =   None )   - >   None 
Declares instance variables with default values.
 model_class# Copy @staticmethod 
def   model_class ( )   - >  Type [ TED ] 
Gets the class of the model architecture to be used by the policy.
Returns :
  Required class.
 run_training# Copy def   run_training ( model_data :  RasaModelData , 
                 label_ids :  Optional [ np . ndarray ]   =   None )   - >   None 
Feeds the featurized training data to the model.
Arguments :
model_data - Featurized training data.label_ids - Label ids corresponding to the data points in model_data.
These may or may not be used by the function depending
on how the policy is trained. train# Copy def   train ( 
        training_trackers :  List [ TrackerWithCachedStates ] , 
        domain :  Domain , 
        precomputations :  Optional [ MessageContainerForCoreFeaturization ]   =   None , 
         ** kwargs :  Any )   - >  Resource 
Trains the policy (see parent class for full docstring).
 predict_action_probabilities# Copy def   predict_action_probabilities ( 
        tracker :  DialogueStateTracker , 
        domain :  Domain , 
        rule_only_data :  Optional [ Dict [ Text ,  Any ] ]   =   None , 
        precomputations :  Optional [ MessageContainerForCoreFeaturization ]   =   None , 
         ** kwargs :  Any )   - >  PolicyPrediction 
Predicts the next action (see parent class for full docstring).
 persist# Persists the policy to a storage.
 persist_model_utilities# Copy def   persist_model_utilities ( model_path :  Path )   - >   None 
Persists model's utility attributes like model weights, etc.
Arguments :
model_path - Path where model is to be persisted load# Copy @classmethod 
def   load ( cls ,  config :  Dict [ Text ,  Any ] ,  model_storage :  ModelStorage , 
         resource :  Resource ,  execution_context :  ExecutionContext , 
          ** kwargs :  Any )   - >  TEDPolicy 
Loads a policy from the storage (see parent class for full docstring).
 TED Objects# Copy class   TED ( TransformerRasaModel ) 
TED model architecture from https://arxiv.org/abs/1910.00486 .
 __init__# Copy def   __init__ ( data_signature :  Dict [ Text ,  Dict [ Text ,  List [ FeatureSignature ] ] ] , 
             config :  Dict [ Text ,  Any ] ,  max_history_featurizer_is_used :   bool , 
             label_data :  RasaModelData , 
             entity_tag_specs :  Optional [ List [ EntityTagSpec ] ] )   - >   None 
Initializes the TED model.
Arguments :
data_signature - the data signature of the input dataconfig - the model configurationmax_history_featurizer_is_used - if 'True'
only the last dialogue turn will be usedlabel_data - the label dataentity_tag_specs - the entity tag specifications batch_loss# Copy def   batch_loss ( 
    batch_in :  Union [ Tuple [ tf . Tensor ,   . . . ] ,  Tuple [ np . ndarray , 
                                                  . . . ] ] )   - >  tf . Tensor 
Calculates the loss for the given batch.
Arguments :
Returns :
  The loss of the given batch.
 prepare_for_predict# Copy def   prepare_for_predict ( )   - >   None 
Prepares the model for prediction.
 batch_predict# Copy def   batch_predict ( 
    batch_in :  Union [ Tuple [ tf . Tensor ,   . . . ] ,  Tuple [ np . ndarray ,   . . . ] ] 
)   - >  Dict [ Text ,  Union [ tf . Tensor ,  Dict [ Text ,  tf . Tensor ] ] ] 
Predicts the output of the given batch.
Arguments :
Returns :
  The output to predict.